Referat - Reprezentarea grafica a functiilor

Categorie
Referate Matematica
Data adaugarii
acum 5 ani
Afisari
414
Etichete
reprezentarea, grafica, functiilor
Descarcari
282
Nota
0 / 10 - 0 voturi

Reprezentarea grafica a functiilor

I. Domeniul de definitie al functiei, intersectiile cu axele
Domeniul de definitie ori este indicat în enunt, ori este subînteles ca domeniul maxim de definitie.
I.1 Domeniul de definitie:
I.1.1
I.1.2
I.1.3
I.1.4
I.1.5
I.1.6
I.1.7
I.1.8
I.2 Intersectiile cu axele
I.2.1

I.2.2


II. Semnul functiei si eventualele simetrii, periodicitate
II.1 Semnul functiei
II.1.1 se gaseste sub Ox
II.1.2 se gaseste deasupra lui Ox

II.2 Simetriile graficului
II.2.1 x=a este axa de simetrie a lui Gf daca

Caz particular x=a: Functiile pare


II.2.2 S(a,b) centru de simetrie


Caz particular – functii impare (a=b=0)


În aceste cazuri, graficul Gf se reprezinta pe intervalul [a,+8), cealalta parte a lui Gf se construieste simetric fata de axa x=a sau centrul S(a,b).

II.3 Periodicitate: f se numeste periodica daca
f se reprezinta pe un interval de lungime perioada principala (cea mai mica perioada) [0,T]

III. Limitele la capete, continuitate, asimptote
III.1 Se calculeaza limitele de pe frontierele domeniului de definitie
III.2 Se stabileste multimea pe care functia este continua
III.3 Asimptote:
III.3.1 Se calculeaza asimptotele verticale în punctele de acumulare finite în care functia nu este continua.
 asimptota verticala la stânga
 asimptota verticala la dreapta

III.3.2 Daca asimptota orizontala la (nu se cauta asimptote oblice !!!)

III.3.3 Daca



IV. Derivata întâi
IV.1 Calculam derivata si stabilim domeniul de derivabilitate. În general, domeniul maxim de definitie ‚ domeniul de derivabilitate cu exceptia:
IV.1.1 !!!
IV.1.2 !!!
IV.1.3 !!!
IV.2 Semitangente la grafic
IV.2.1 domeniului de derivabilitate => si este finita
y-f(x0)=f’(x0)(x-x0) tangenta la Gf în punctul M0(x0,f(x0))
caz particular f’(x0)= 0 => tangenta la Gf în punctul M0(x0,f(x0)) este orizontala



IV.2.2 tangenta la Gf este verticala


IV.2.3 si cel putin una este fin


Copyright © Toate drepturile rezervare. 2008 - 2024 - Referatele.org